CALCULATEUR D'EMPREINTE PESTICIDES PAR ALIMENT Méthodologie

Contacts Solagro : Aurélien CHAYRE et Caroline GIBERT Version du calculateur mise en ligne le 24 juillet 2023

SOMMAIRE

Un calculateur d'empreinte pesticides par aliment : pour quoi faire ?	3
Réduire l'utilisation de pesticides en développant l'agriculture biologique	4
Méthode de calcul de l'empreinte pesticides par aliment	6
Calcul de la surface traitée	6
Calcul de la surface protégée grâce aux achats en bio	7
Sources des données utilisées	8
3.3.1 Aliments et pays de référence des produits bruts agricoles	8
3.3.4 Équivalences massiques	11
Intérêts et limites de l'indice de fréquence de traitement (IFT)	11
Exemple de calcul d'une empreinte pesticides	12
Exemples d'utilisation du calculateur	13
Comparer plusieurs aliments entre eux	13
Comparer l'empreinte bio/non-bio pour un même aliment	14
Précautions d'utilisation du calculateur	14
Solagro, qui sommes-nous ?	15
nexe 1 : Liste des substances phytosanitaires autorisées en agriculture biologique	16
nexe 2 : Rendements moyens en non-bio, coefficients de perte de rendemer en bio et rendements moyens en bio par culture	
nexe 3 : IFT de référence en productions non-bio et bio et sources des donné	
	Réduire l'utilisation de pesticides en développant l'agriculture biologique

Ce document présente les éléments de contexte qui ont conduit à créer le calculateur d'empreinte pesticides. Il présente en détail la méthode de calcul et des exemples d'utilisation. Enfin, il expose les limites et les précautions d'utilisation de l'outil.

1 UN CALCULATEUR D'EMPREINTE PESTICIDES PAR ALIMENT : POUR QUOI FAIRE ?

Solagro a créé le premier calculateur d'empreinte pesticides par aliment avec le soutien de la Fondation Ecotone. L'objectif de ce calculateur est d'évaluer l'impact de nos consommations alimentaires sur l'utilisation de pesticides, issus de la chimie de synthèse, en agriculture.

Avec la <u>carte Adonis</u>, Solagro a cartographié en 2022 la fréquence d'utilisation des pesticides par commune en France. Cette carte, basée sur les indices de fréquence de traitement (IFT) moyens par culture (voir la <u>méthodologie d'Adonis IFT</u>), localise les intensités d'usages des pesticides et indique quelles sont les cultures les plus traitées par commune et par type de produit.

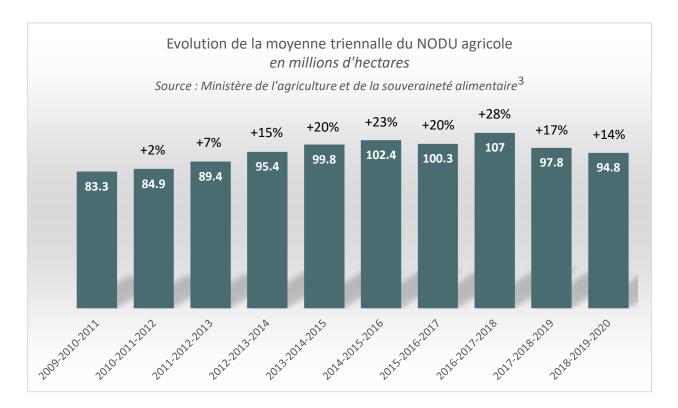
Avec le <u>calculateur d'empreinte pesticides</u>, l'utilisateur peut aller plus loin en évaluant la surface traitée par des pesticides pour produire la quantité d'aliments qu'il consomme. L'utilisateur renseigne les quantités consommées par aliment et distingue les aliments « bio », issus de l'agriculture biologique, des aliments « non-bio », issus d'autres modes de production que l'agriculture biologique¹. A partir de ces données, le calculateur estime « **l'empreinte pesticides** » exprimée en **équivalent de surface traitée (à pleine dose) par aliment**, puis pour l'ensemble des aliments renseignés.

Le calculateur offre la possibilité à un consommateur ou à un groupe de consommateurs (famille, restauration collective, ...) d'évaluer l'empreinte pesticides pour trente des aliments les plus consommés en France (hors viande, lait et œuf). Il permet de comparer l'empreinte pesticides entre différents aliments ainsi qu'entre aliments non-bio et bio issus de productions végétales.

Comme pour la carte Adonis, la méthode d'évaluation de l'empreinte pesticides repose sur les seules données aujourd'hui disponibles publiquement, à savoir les indices de fréquence de traitement (IFT) moyens issus, principalement, des enquêtes sur les pratiques phytosanitaires du ministère de l'agriculture et du ministère de la transition écologique². Le calculateur prend en compte les traitements effectués en agriculture biologique ainsi que les différences de rendements entre les modes de production bio et non-bio.

¹ Suite à cette explicitation, dans la suite du document, nous simplifions nos propos en bio et non-bio, sans guillemets, pour faciliter la lecture.

² Voir le détail en annexes et sur le site https://solagro.org/images/imagesCK/files/domaines-intervention/agroecologie/Guide me thodologique - Carte sur l usage des pesticides.pdf


2 REDUIRE L'UTILISATION DE PESTICIDES EN DEVELOPPANT L'AGRICULTURE BIOLOGIQUE

Le Grenelle de l'environnement, engagé en 2007, sous la présidence de Nicolas Sarkozy et son Ministre de l'Écologie Jean-Louis Borloo, portait déjà une réelle ambition environnementale en mobilisant tous les acteurs de la société dont les ONG. Une loi issue du Grenelle a été adoptée à la quasi-unanimité le 23 juillet 2009 : la loi Grenelle I. Des objectifs clairs y avaient été fixés concernant l'agriculture (article 31) : développement de l'agriculture biologique (production et structuration de filières soutenue par l'État) avec les objectifs d'aboutir à 20 % de produits biologiques dans la restauration collective d'ici 2012 et atteindre 6% de surfaces agricoles en bio en France en 2012 et 20 % en 2020, en parallèle d'une réduction de 50% de l'usage des pesticides en 10 ans (plan Ecophyto 1).

Objectifs encore non atteints, puisqu'en 2022, seulement **10,7% de la surface agricole française était cultivée en agriculture biologique³** pour un objectif de 20% selon le plan Ambition bio du gouvernement.

Alors que la **loi Egalim** avait fixé un **objectif de 20% de produits bio en restauration collective au 1^{er} janvier 2022**, nous n'étions qu'à **6%** selon l'Agence bio.

Dans le même temps, les **ventes de produits phytosanitaires exprimées en nombre de doses unités (NODU)** ont **augmenté en moyenne de 16% entre 2009 et 2020** (moyennes triennales du NODU)⁴

³ https://www.agencebio.org/vos-outils/les-chiffres-cles/

⁴ https://agriculture.gouv.fr/indicateurs-des-ventes-de-produits-phytopharmaceutiques

L'agriculture biologique est parfois pointée du doigt comme étant également utilisatrice de pesticides mais qu'en est-il vraiment ?

Les principes de l'agriculture biologique reposent sur des solutions fondées sur la nature où le recours à tout intrant chimique doit être évité.

Selon l'article 24 du Règlement UE n° 2018/848 relatif à la production biologique, l'agriculteur doit « prévenir les dégâts causés par les ravageurs, les maladies et les mauvaises herbes :

- en assurant la protection des prédateurs naturels;
- en choisissant les espèces et les variétés appropriées,
- en ayant une rotation des cultures appropriée;
- en développant les techniques culturales;
- en ayant recours au désherbage thermique.

En agriculture biologique, l'agriculteur peut avoir recours, « en cas de menace avérée pour une culture » à certaines matières actives⁵ pour la protection des végétaux. La liste des matières actives autorisées se trouve à l'annexe I du Règlement UE 2021/1165⁶ (cf. annexe 1)

Dans les chiffres, ça représente quoi en réalité?

Grâce à la <u>base de données Adonis</u>, nous avons pu calculer un indice de fréquence de traitement (IFT) moyen (hors produits de biocontrôle) pour l'ensemble des surfaces cultivées en bio et en non-bio en France. L'IFT nous renseigne sur la quantité moyenne de pesticides utilisée par hectare. Plus il est élevé, plus la quantité utilisée est importante. En 2021, pour les 25 millions d'hectares d'agriculture non-bio identifiés dans la base de données Adonis, l'IFT total moyen (hors biocontrôle) est de 2,39⁷ alors que sur les 2,4 millions de surfaces identifiées en bio, l'IFT moyen est de 0,06⁸, soit une réduction de -97% par rapport à celui des surfaces en non-bio.

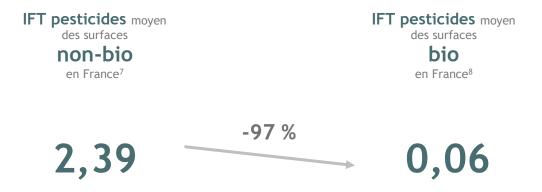


Figure 1. IFT total moyen (hors biocontrôle) des surfaces cultivées en non-bio et en bio calculé à partir de la base de données Adonis (surfaces agricoles de 2021) – Source Solagro

⁵ Un produit de protection des cultures est utilisé pour soigner et/ou prévenir les maladies des plantes. Il est composé : (1) d'une matière active qui agit de manière générale ou spécifique sur les organismes nuisibles ou directement sur les végétaux ; (2) de matières inertes qui n'ont aucune activité biologique, mais qui ont la capacité de modifier les qualités et les propriétés du produit afin d'en faciliter son utilisation (adjuvant, mouillant...).

⁶ https://eur-lex.europa.eu/legal-content/FR/TXT/PDF/?uri=CELEX:32021R1165&from=FR (pages 9 à 12)

⁷ Somme des IFT totaux hors biocontrôle des cultures non-bio / SAU non-bio à partir des IFT et des surfaces de la base de données ADONIS – Solagro – Méthodologie de calcul de l'indicateur de fréquence de traitement phytosanitaire en agriculture par commune – 26 septembre 2022

⁸ Somme des IFT totaux hors biocontrôle des cultures bio / SAU bio à partir des IFT et des surfaces de la base de données ADONIS – Solagro – Méthodologie de calcul de l'indicateur de fréquence de traitement phytosanitaire en agriculture par commune – 26 septembre 2022

Même si certaines molécules sont utilisées en agriculture biologique (cuivre essentiellement et dans un cadre très réglementé), la majorité des surfaces cultivées en bio ne reçoit pas d'intrants issus de la chimie de synthèse : moins 97% de fréquence de traitement en bio par rapport au non-bio. Les surfaces de céréales, d'oléagineux et de protéagineux ne reçoivent pas de pesticides issus de la chimie de synthèse.

C'est donc dans le but de mieux comprendre l'impact réel de nos consommations alimentaires que le calculateur d'empreintes pesticides a été créé. Cet outil permet d'évaluer simplement, aliment par aliment, la surface correspondante qui est traitée par des pesticides issus de la chimie de synthèse. Il permet également de comparer l'empreinte d'un produit bio avec celle d'un produit non-bio.

3 METHODE DE CALCUL DE L'EMPREINTE PESTICIDES PAR ALIMENT

Le calculateur d'empreinte pesticides calcule deux valeurs d'impact par **aliment** pour les **quantités d'aliments bio et non-bio** renseignées par l'utilisateur (en kilogramme) :

- La surface traitée, exprimée en mètres carrés et
- La surface protégée grâce aux achats en bio, elle aussi exprimée en mètres carrés.

3.1 Calcul de la surface traitée

La surface traitée est le rapport entre :

- la quantité de produit brut agricole,
- l'indice de fréquence de traitement moyen phytosanitaire de la culture et
- la surface nécessaire à la production d'1 kg de produit brut agricole.

Elle est calculée par la formule suivante :

```
Surface traitée =  \left( Q \text{t\'e } d' \text{aliment bio} \times \text{\'eq. massique} \times \text{IFT moyen bio} \times \frac{1}{R d t \text{ bio}} \right) + \\ \left( Q \text{t\'e } d' \text{aliment non bio} \times \text{\'eq. massique} \times \text{IFT moyen non bio} \times \frac{1}{R d t \text{ non bio}} \right)
```

Avec:

- Qté d'aliment : quantité d'aliments renseignée par l'utilisateur en kilogramme, en bio et en non-bio
- Éq. massique: masse de produit brut agricole nécessaire à la production d'1 kg d'aliment transformé renseigné par l'utilisateur (exemple: 1,33 kg de blé tendre sont nécessaires à la production d'1 kg de farine)
- **IFT moyen** : indice de fréquence de traitement phytosanitaire total moyen (hors produits de biocontrôle) de la culture relative à l'aliment sélectionné (exemple : IFT total moyen du blé tendre pour l'aliment « Farine de blé »), en bio et en non-bio
- **Rdt**: rendement moyen de la culture en kg/m², en bio et en non-bio et
- 1/Rdt: surface nécessaire à la production d'1 kg de produit brut agricole

3.2 Calcul de la surface protégée grâce aux achats en bio

La surface protégée grâce aux achats en bio est calculée par la différence entre :

- La surface potentiellement traitée si tous les achats étaient non-bio
- La surface traitée en bio

Elle est calculée par la formule suivante :

```
Surface protégée grâce aux achats en bio =  \left( Qt\'ed' a liment \ bio \times \'eq. \ massique \times IFT \ moyen \ non \ bio \times \frac{1}{Rdt \ non \ bio} \right) - \\ \left( Qt\'ed' a liment \ bio \times \'eq. \ massique \times IFT \ moyen \ bio \times \frac{1}{Rdt \ bio} \right)
```

Avec:

- Qté d'aliment : quantité d'aliments en bio renseignée par l'utilisateur en kilogramme
- Éq. massique: masse de produit brut agricole nécessaire à la production d'1 kg d'aliment transformé renseigné par l'utilisateur (exemple: 1,33 kg de blé tendre sont nécessaires à la production d'1 kg de farine)
- **IFT moyen**: indice de fréquence de traitement phytosanitaire total moyen (hors produits de biocontrôle) de la culture relative à l'aliment sélectionné (exemple: IFT total moyen du blé tendre pour l'aliment « Farine de blé »), en bio et en non-bio
- Rdt : rendement moyen de la culture en kg/m², en bio et en non-bio et
- 1/Rdt : surface nécessaire à la production d'1 kg de produit brut agricole

3.3 Sources des données utilisées

3.3.1 Aliments et pays de référence des produits bruts agricoles

La liste des aliments utilisée a été établie sur la base des principaux aliments consommés par les français (hors viande, lait et œuf) et des produits agricoles pour lesquels il existe des références fiables de rendements et de pratiques phytosanitaires.

La liste des 30 produits bruts agricoles relatifs à ces aliments est la suivante :

Abricot, banane, betterave-à-sucre, blé, canne-à-sucre, carotte, cerise, chou-fleur, chou vert, clémentine, colza, avoine, fraise, maïs, melon, nectarine, noix, olive, orange, pêche, poireau, pomme, pomme-de-terre, prune, raisin de cuve, riz, salade, soja, tomate, tournesol

Hormis les oranges et les olives, toutes ces productions sont cultivées en France et produites en quantité importantes. Par manque de référence dans les autres pays de production ce sont les références françaises, qui sont actuellement les plus fiables produites pour calculer un indice de fréquence de traitement moyen, qui ont été utilisées pour 28 produits sur 30. Les noix et les tomates sont majoritairement importées⁹. Par manque de référence sur les pratiques phytosanitaires pour ces deux cultures dans les principaux pays producteurs¹⁰, les références françaises sont utilisées dans le calculateur. Le calculateur estime donc une empreinte pesticides relative aux pratiques moyennes françaises pour 28 produits.

Des références espagnoles sont utilisées pour les rendements des oranges et des olives, également majoritairement importées¹¹. Les oranges n'étant pas produites en France, il n'existe aucune référence de rendement. Pour la production d'olives, les pratiques phytosanitaires et les rendements sont bien documentés en France, toutefois les rendements et volumes produits en Espagne étant nettement supérieurs, le choix a été fait d'utiliser les références espagnoles pour ces 2 aliments¹².

3.3.2 Rendements

Pour le calcul de l'empreinte pesticides, il est nécessaire de différencier les rendements de l'agriculture non-bio de ceux de l'agriculture bio. Il existe actuellement peu de références sur les rendements moyens par mode de production. De ce fait, des rendements moyens bio et non-bio nationaux par culture ont été estimés (cf Tableaux 1 et 2) :

Pour 28 produits pour la France, à partir :

- Des rendements moyens nationaux non-bio et bio confondus fournis par la statistique agricole annuelle (SAA)
- Des surfaces cultivées en bio fournies par l'Agence bio

⁹ La part importée des noix et des produits à base de noix est de 82% et celle des tomates et des produits à base de tomates est de 62%. Source : estimation de la part importée à partir des bilans d'approvisionnement agroalimentaire du Ministère de l'agriculteur et de l'alimentation (année ?).

¹⁰ Moldavie et Ukraine pour les noix et Maroc et Espagne pour les tomates (source : matrices du commerce de la FAO).

¹¹ La part importée des oranges et des produits à base d'oranges est de 100% et celle des olives et des produits à base d'olives est de 85%. Source : estimation de la part importée à partir des bilans d'approvisionnement agroalimentaire du Ministère de l'agriculteur et de l'alimentation (année ?).

¹² MINISTERIO DE AGRICULTURA, PESCA Y ALIMENTACIÓN - Encuesta de Utilización de Productos Fitosanitarios 2019 https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/maquetacioninformededatosdelaeupf19 tcm30-577679.pdf

 Des coefficients de perte de rendements en bio, par rapport au non-bio, issus de sources différentes : enquêtes « Terres labourables », la base de données Agribalyse, l'étude Bionutrinet et à « dire d'expert » pour la banane (cf. annexe 2)

Pour l'orange et l'olive pour l'Espagne, à partir :

- Des rendements moyens nationaux fournis par FAOSTAT
- Des coefficients de perte de rendements en bio, par rapport au non-bio, issus de 2 études (Bionutrinet (ANR 2013-2017) et Seufert et al., 2012¹³ »

Tableau 1 Données mobilisées pour le calcul des rendements moyens par culture en bio et en non-bio

Donnée	Période temporelle	Source
Rendements moyens nationaux par culture (non-bio et bio)	Moyenne 2017-2021	Statistique agricole annuelle et FAOSTAT
Surface cultivée en bio	Moyenne 2017-2021	Agence bio
Coefficient de perte de rendement en bio	Variable selon la source	Enquête « Terres labourables »; Agribalyse; « Dire d'expert » pour la banane, Étude Bionutrinet, Étude « Comparing the yields of organic and conventional agriculture »

Tableau 2 Liens vers les sources de données pour le calcul des rendements

Sources	Liens vers les sources		
Statistique agricole annuelle (SAA)	https://agreste.agriculture.gouv.fr/agreste- web/disaron/SAA-SeriesLongues/detail/		
Statistiques sur les cultures de la FAO (FAOSTAT)	https://www.fao.org/faostat/en/#data/QCL		
Surfaces en bio (Agence bio)	https://www.data.gouv.fr/fr/datasets/surfaces- cheptels-et-nombre-doperateurs-bio-a-la-commune/		
	https://agreste.agriculture.gouv.fr/agreste- web/methodon/S-TerLab%202022/methodon/		
Coefficient de perte de rendement	https://agribalyse.ademe.fr/app		
en bio	https://bionutrinet.fr/		
	https://www.nature.com/articles/nature11069		

¹³ Seufert, V., Ramankutty, N. & Foley, J. Comparing the yields of organic and conventional agriculture. Nature 485, 229–232 (2012). https://doi.org/10.1038/nature11069

A partir de ces données, le rendement moyen non-bio entre 2017 et 2021 est calculé par la formule suivante :

$$Rdt \ non \ bio = Rdt \ total + (Rdt \ total \times \frac{Surf \ bio}{Surf \ totale} \times Coeff \ rdt \ AB)$$

Avec

- Rdt non bio : rendement moyen non bio calculé
- Rdt total: rendement moyen total (bio et non-bio) de la SAA, moyenne 2017-2021
- **Surf bio**: surface en bio de l'Agence bio, moyenne 2017-2021
- Surf totale: surface totale (bio et non-bio) de la SAA, moyenne 2017-2021
- Coeff rdt AB: coefficient de perte de rendement en bio par rapport au non-bio

Le rendement moyen bio entre 2017 et 2021 est ensuite calculé par la formule suivante :

$$Rdt\ bio = Rdt\ non\ bio + (Rdt\ non\ bio \times\ Coeff\ rdt\ AB)$$

Pour l'orange et l'olive, le coefficient de perte de rendement en bio a été directement appliqué au rendement moyen fourni par FAOSTAT.

Les rendements moyens calculés et les coefficients de perte de rendements utilisés sont présentés en <u>annexe 2</u>.

3.3.3 <u>Indices de fréquence de traitement</u>

Les IFT totaux moyens (hors biocontrôle) de référence utilisés dans le calculateur sont présentés en <u>annexe 3</u>. Les sources de chaque IFT sont mentionnées dans le tableau de cette annexe.

L'IFT total moyen (hors biocontrôle) correspond à l'IFT herbicide + IFT fongicide + IFT insecticide + IFT traitement de semence + IFT autre

Un des principes de l'agriculture biologique est de se passer de pesticides. Leur utilisation en agriculture biologique est donc très faible comparé au mode de production non-bio. Toutefois, dans les cas où aucune autre pratique ne permet de gérer les maladies, les ravageurs ou les adventices, il est possible d'utiliser les substances d'origine naturelle listées dans l'annexe I du Règlement (CE) N° 1165/2021 (cf. annexe 1 de ce rapport).

Des IFT pour la culture de la pomme et de la vigne sont établis en agriculture biologique grâce aux enquêtes sur les pratiques phytosanitaires en arboriculture (2018) et en vigne (2019). Les IFT totaux moyen (hors biocontrôle) de la pomme et de la vigne bio sont respectivement de 9 et 4, contre 26,6 et 11,3 en non-bio.

Nous avons identifié 14 autres productions utilisées dans le calculateur qui sont susceptibles de recevoir des traitements en agriculture biologique, particulièrement des fruits et des légumes : abricot, cerise, chou-fleur, chou vert, clémentine, fraise, melon, nectarine, olive, orange, pêche, pomme de terre, prune, tomate.

Toutefois, il n'existe pas de référence sur les traitements en agriculture biologique de ces cultures. Les fruits et les légumes identifiés sont vulnérables aux maladies fongiques et/ou à la pressions de certains insectes. En l'absence de références, nous faisons donc l'hypothèse qu'il y a recours à certaines substances comptabilisées dans l'IFT total (hors biocontrôle) pour les 14 cultures mentionnées ci-dessus en agriculture biologique. En agriculture biologique, la majorité des traitements réalisés hors produits de biocontrôle sont des fongicides (composés de cuivre essentiellement). Les traitements insecticides sont essentiellement réalisés avec des produits de biocontrôle. Pour le calculateur d'empreinte pesticides mis en ligne en 2023 et pour les 14 cultures identifiées, l'IFT total (hors biocontrôle) moyen en bio a été fixé à 35% de l'IFT fongicide moyen des références non-bio issues des enquêtes sur les pratiques phytosanitaires en agriculture (cf annexe 3). Les IFT du mode de production biologique de ces 14 cultures pourront être mis à jour dès lors que de nouvelles références seront établies.

3.3.4 Équivalences massiques

Les équivalences massiques utilisées dans le calculateur sont issues du projet Bionutrinet.

3.4 Intérêts et limites de l'indice de fréquence de traitement (IFT)

L'intérêt de l'IFT est de permettre d'agréger des substances très différentes et ainsi de mesurer une pression pesticides globale. Il s'agit d'un indicateur de pression permettant de comparer des systèmes ou des cultures sur le plan de leur dépendance aux pesticides. En revanche, il ne prend pas en compte les caractères spécifiques des produits, notamment leur degré de toxicité ou leur rémanence dans l'environnement, ni les caractéristiques du milieu. Ce n'est pas un indicateur direct d'évaluation des impacts des pratiques agricoles sur l'environnement¹⁴ mais constitue un indicateur de pressions pertinent au regard du faible nombre d'autres indicateurs disponibles.

Un de ses avantages est qu'il repose sur une méthodologie officielle et standardisée avec une boite à outils déployée par le Ministère de l'agriculture et de la souveraineté alimentaire pour accompagner les utilisateurs¹⁵. Qui plus est cet indicateur est utilisé dans les dispositifs de suivi (enquêtes pratiques phytosanitaires) et dans les dispositifs d'actions publiques (MAEC, fermes DEPHY, groupes 30000, certification HVE, diagnostics agroécologiques, GIEE) notamment vis-àvis de l'évaluation de l'atteinte des différents objectifs des plans Ecophyto (1, 2, 2+ et bientôt 3).

Ici, l'IFT est multiplié par la surface nécessaire à la production d'1kg d'aliment non-bio ou bio. Le résultat obtenu **correspond à la surface recevant l'équivalent d'un traitement à pleine dose homologuée.** Il ne distingue pas les types de traitements, ni les substances utilisées, ni leur toxicité vis-à-vis des milieux et de la santé humaine.

¹⁴ https://www.inrae.fr/sites/default/files/pdf/4737337f04b44cd2735d2d74edf5a0db.pdf

¹⁵ https://agriculture.gouv.fr/indicateur-de-frequence-de-traitements-phytosanitaires-ift

3.5 Exemple de calcul d'une empreinte pesticides

En France, l'IFT moyen de la pomme est de **26,6** en agriculture conventionnelle et de **9** en agriculture biologique (source : enquête pratiques phytosanitaires en arboriculture 2018)

Le rendement moyen des pommiers en conventionnel est de 41,6 t/ha, ce qui correspond à **0,24** m² pour produire 1 kg

Le rendement moyen des pommiers en bio est de 28,5 t/ha, ce qui correspond à **0,35 m² pour produire 1 kg**

La surface traitée à pleine dose pour produire 1kg de pomme est donc de :

- En conventionnel : 26,6 * 0,24 = 6,38 m²/kg
- En bio : $9 * 0.35 = 3.15 \text{ m}^2/\text{kg}$

La surface protégée par l'achat d'1kg de pomme bio est de : $6,38 - 3,15 = 3,23 \text{ m}^2$

4 EXEMPLES D'UTILISATION DU CALCULATEUR

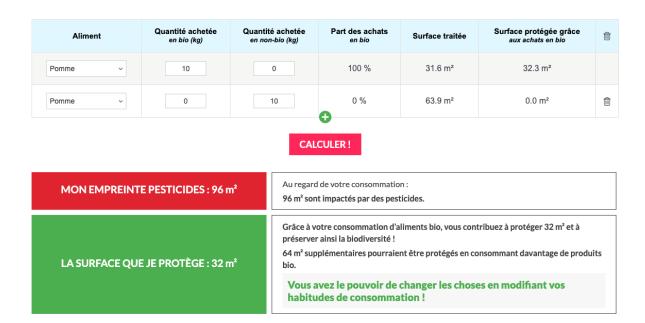
4.1 Comparer plusieurs aliments entre eux

Une trentaine d'aliments sont disponibles dans le calculateur. Il est possible d'ajouter autant de ligne que vous le souhaitez pour comparer les surfaces traitées et les surfaces protégées par aliment en bio et en non-bio confondu.

La capture d'écran ci-dessous montre un calcul à partir des 12 aliments les plus consommés par les français avec 50% d'achats en bio. Le calculateur permet alors de visualiser l'impact de chaque aliment sur les surfaces traitées et les surfaces protégées grâce aux achats en bio. Il donne également l'empreinte globale de ces 12 aliments ainsi que la surface globale protégée. Vous pouvez renseigner les quantités journalières, hebdomadaires, mensuelles, annuelles, ... que vous achetez pour vous, pour votre famille, votre restaurant, ...

Aliment	Quantité achetée en bio (kg)	Quantité achetée en non-bio (kg)	Part des achats en bio	Surface traitée	Surface protégée grâce aux achats en bio	î
Farine de blé v	59.5	59.5	50 %	548.1 m²	548.1 m²	
Pomme de terre v	24	24	50 %	125.9 m²	51.6 m²	î
Vin v	16.5	16.5	50 %	428.2 m²	190.9 m²	
Orange ~	15	15	50 %	31.0 m²	26.1 m²	
Sucre de betterave v	7	7	50 %	30.8 m²	30.8 m²	î
Sucre de canne v	7	7	50 %	25.1 m²	25.1 m²	î
Tomate ~	12.5	12.5	50 %	12.7 m²	6.7 m²	î
Pomme ~	11.5	11.5	50 %	109.9 m²	37.2 m²	
Huile d'olive ~	2	2	50 %	451.2 m²	305.9 m²	
Huile de colza v	2	2	50 %	91.4 m²	91.4 m²	î
Huile de tournesol v	2	2	50 %	50.9 m²	50.9 m²	
Riz blanc ~	3	3	50 %	12.3 m²	12.3 m²	

CALCULER!


Au regard de votre consommation:
1918 m² sont impactés par des pesticides.

Grâce à votre consommation d'aliments bio, vous contribuez à protéger 1377 m² et à préserver ainsi la biodiversité!
1647 m² supplémentaires pourraient être protégés en consommant davantage de produits bio.

Vous avez le pouvoir de changer les choses en modifiant vos habitudes de consommation!

4.2 Comparer l'empreinte bio/non-bio pour un même aliment

Comme le montre la capture ci-dessous, pour comparer l'empreinte pesticides d'un même aliment en bio et en non-bio, vous pouvez ouvrir 2 lignes avec le même aliment et renseigner, dans une ligne, une quantité nulle en bio, et dans l'autre, une quantité nulle en non-bio. Puis, en renseignant la même quantité achetée en bio et en non-bio, le calculateur renvoie les surfaces traitées et les surfaces protégées pour chaque mode de production.

5 Precautions d'utilisation du calculateur

Ce calculateur repose sur des valeurs moyennes nationales. Le résultat obtenu en équivalent de surface traitée représente donc une empreinte pesticides moyenne de l'aliment consommé. Au sein d'un même mode de production (non-bio ou bio), pour un même aliment, la fréquence d'utilisation des pesticides issus de la chimie de synthèse et les rendements peuvent varier d'une localité à l'autre et d'une année à l'autre.

En bio, les IFT de référence sont établis pour la pomme et la vigne dans les enquêtes officielles. D'autres fruits et légumes peuvent avoir un IFT non nul en agriculture biologique mais les références ne sont pas établies. 14 autres cultures ont été identifiées comme susceptibles d'être traitées en agriculture biologique : abricot, cerise, chou-fleur, chou vert, clémentine, fraise, melon, nectarine, olive, orange, pêche, pomme de terre, prune, tomate. Le calculateur renvoie donc une surface traitée pour 16 cultures en bio. Des hypothèses ont été faites pour 14 de ces cultures en l'absence de références officielles (cf. 3.3.3) afin de ne pas afficher systématiquement une empreinte nulle pour les produits bio (même s'ils ne sont pas systématiquement traités, l'agriculture biologique privilégiant systématiquement des pratiques alternatives). Des mises à jour seraient à prévoir dès lors que des références officielles seraient disponibles.

Le calculateur encourage à la consommation d'aliments issus de l'agriculture biologique car c'est le seul mode de production qui garantit une réelle diminution de l'usage des pesticides en agriculture et qui permet ainsi de préserver la biodiversité. Avec <u>Afterres2050</u>, Solagro propose

un scénario de transition pour, en autres objectifs, réduire l'utilisation des pesticides. Avec son récent <u>chapitre sur la biodiversité</u>, Solagro propose 12 leviers d'actions pour agir, dont la généralisation de l'agroécologie avec une réduction de 90% des pesticides (soit 70% des exploitations agricoles en agriculture biologique et 30% en production intégrée et agriculture de conservation).

Tous les acteurs de la chaîne alimentaire ont le pouvoir de faire changer les choses et d'agir pour la transition agroécologique et alimentaire. Ce calculateur permet d'informer les consommateurs sur le « <u>pouvoir de leur assiette</u> » et leur capacité à agir à travers la modification de leurs habitudes alimentaires ; mais les mêmes calculs peuvent être effectués pour l'approvisionnement des entreprises de l'agro-alimentaire dont le rôle dans la réduction des pesticides est également primordial.

6 SOLAGRO, QUI SOMMES-NOUS?

Solagro est une entreprise associative, créée en 1981, qui place son expertise au service des transitions énergétique, climatique, agroécologique et alimentaire.

Son équipe, basée à Toulouse et à Lyon, est composée d'une quarantaine de salarié·es : ingénieur·es, agronomes, énergéticien·nes, génies des procédés environnementaux mais aussi de spécialistes de sciences humaines et sociales.

Solagro intègre des compétences en **Ingénierie et conseil, Recherche et prospective, Formation,** trois métiers qui se complètent et s'enrichissent mutuellement.

Solagro croise depuis plus de 40 ans, diverses thématiques et méthodes pour une approche systémique des transitions. Du champ à l'assiette, de la ferme au territoire, du local à l'Europe et au-delà, Solagro aborde tous les défis qui pèsent sur le vivant et sur l'environnement, dans une vision d'ensemble et de long terme. Les domaines d'intervention sont divers : Agroécologie-Biodiversité, Agriculture-Énergie-Climat, Alimentation, Bioéconomie, Bioressources et Prospective, Méthanisation, Stratégie territoriales.

ANNEXE 1: LISTE DES SUBSTANCES PHYTOSANITAIRES AUTORISEES EN AGRICULTURE BIOLOGIQUE

16.7.2021

FR

Journal officiel de l'Union européenne

L 253/21

ANNEXE I

Substances actives contenues dans les produits phytopharmaceutiques autorisés pour l'utilisation dans la production biologique visées à l'article 24, paragraphe 1, point a), du règlement (UE) 2018/848

Les substances actives énumérées ici peuvent entrer dans la composition des produits phytopharmaceutiques utilisés en production biologique conformément à la présente annexe, pour autant que ces produits phytopharmaceutiques soient autorisés conformément au règlement (CE) n° 1107/2009. Ces produits phytopharmaceutiques sont utilisés dans le respect des conditions établies à l'annexe du règlement d'exécution (UE) n° 540/2011 et des conditions précisées dans les autorisations accordées par les États membres dans lesquels ils sont utilisés. Des conditions plus restrictives pour une utilisation dans le cadre de la production biologique sont indiquées dans la dernière colonne de chaque tableau.

Conformément à l'article 9, paragraphe 3, du règlement (UE) 2018/848, les phytoprotecteurs, synergistes et coformulants en tant que composants de produits phytopharmaceutiques, de même que les adjuvants à mélanger avec des produits phytopharmaceutiques, sont autorisés en production biologique, à condition que ces produits et substances soient autorisés en vertu du règlement (CE) n° 1107/2009. Les substances énumérées dans la présente annexe ne peuvent être utilisées que pour la lutte contre les organismes nuisibles tels qu'ils sont définis à l'article 3, paragraphe 24, du règlement (UE) 2018/848.

Conformément à l'annexe II, partie I, point 1.10.2, du règlement (UE) 2018/848, ces substances ne peuvent être utilisées que lorsque les mesures prévues au point 1.10.1 de la même partie I ne suffisent pas à protéger les végétaux contre les organismes nuisibles, en particulier l'utilisation d'agents de lutte biologique tels que les insectes, acariens et nématodes utiles, conformément aux dispositions du règlement (UE) n° 1143/2014 du Parlement européen et du Conseil (¹).

Aux fins de la présente annexe, les substances actives sont réparties entre les sous-catégories suivantes:

1. Substances de base

Les substances de base énumérées à la partie C de l'annexe du règlement d'exécution (UE) n° 540/2011 qui sont d'origine végétale ou animale et issues de denrées alimentaires telles que définies à l'article 2 du règlement (CE) n° 178/2002 du Parlement européen et du Conseil (²) peuvent être utilisées pour la protection des végétaux dans le cadre de la production biologique. Ces substances de base sont marquées d'un astérisque dans le tableau ci-dessous. Elles sont utilisées conformément aux utilisations, conditions et restrictions fixées dans les rapports correspondants (³) et compte tenu des éventuelles restrictions supplémentaires qui figurent, le cas échéant, dans la dernière colonne du tableau ci-dessous.

D'autres substances de base énumérées à la partie C de l'annexe du règlement n° 540/2011 ne peuvent être utilisées pour la protection des végétaux dans le cadre de la production biologique que si elles sont énumérées dans le tableau ci-dessous. De telles substances sont utilisées conformément aux utilisations, conditions et restrictions fixées dans les rapports correspondants³ et compte tenu des éventuelles restrictions supplémentaires qui figurent, le cas échéant, dans la colonne de droite du tableau ci-dessous.

Les substances de base ne doivent pas être utilisées comme herbicides.

Numéro et partie de l'annexe (¹)	CAS	Dénomination	Conditions et limites spécifiques
1C		Equisetum arvense L.*	
2C	9012-76-4	Chlorhydrate de chitosane*	issu d'Aspergillus ou de l'aquaculture biologique ou de la pêche durable conformément à l'article 2 du règlement (UE) n° 1380/2013 du Parlement européen et du Conseil (²)

^(*) Règlement (UE) n° 1143/2014 du Parlement européen et du Conseil du 22 octobre 2014 relatif à la prévention et à la gestion de l'introduction et de la propagation des espèces exotiques envahissantes (JO L 317 du 4.11.2014, p. 35).

⁽²) Règlement (CE) nº 178/2002 du Parlement européen et du Conseil du 28 janvier 2002 établissant les principes généraux et les prescriptions générales de la législation alimentaire, instituant l'Autorité européenne de sécurité des aliments et fixant des procédures relatives à la sécurité des denrées alimentaires (JO L 31 du 1.2.2002, p. 1).

⁽º) Disponible dans la base de données relative aux pesticides: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/active-substances/?event=search.as

3C	57-50-1	Saccharose*	
4C	1305-62-0	Hydroxyde de calcium	
5C	90132-02-8	Vinaigre*	8
6C	8002-43-5	Lécithines*	
7C	-	Salix spp. Cortex*	
8C	57-48-7	Fructose*	
9C	144-55-8	Hydrogénocarbonate de sodium	
10C	92129-90-3	Lactosérum*	
11C	7783-28-0	Phosphate diammonique	Uniquement pour pièges
12C	8001-21-6	Huile de tournesol*	
14C	84012-40-8 90131-83-2	Urtica spp. (extrait d'Urtica dioica) (extrait d'Urtica urens)*	
15C	7722-84-1	Peroxyde d'hydrogène	
16C	7647-14-5	Chlorure de sodium	
17C	8029-31-0	Bière*	
18C	-	Poudre de graines de moutarde*	
20C	8002-72-0	Huile d'oignon*	
21C	52-89-1	L-cystéine (E 920)	
22C	8049-98-7	Lait de vache*	
23C	-	Extrait de bulbe d'Allium cepa L.*	
		Autres substances de base d'origine végétale ou animale et issues de denrées alimentaires*	

⁽¹) Inscription sur la liste conformément au règlement d'exécution (UE) n° 540/2011, selon le numéro et la catégorie: partie A, substances actives réputées approuvées en vertu du règlement (CE) n° 1107/2009; partie B, substances actives approuvées en vertu du règlement (CE) n° 1107/2009; partie C, substances de base; partie D, substances actives à faible risque; et partie E, substances actives dont on envisage la substitution.

2. Substances actives à faible risque

Les substances actives à faible risque, autres que les micro-organismes, énumérées à la partie D de l'annexe du règlement d'exécution (UE) n° 540/2011 peuvent être utilisées pour la protection des végétaux dans le cadre de la production biologique si elles figurent dans le tableau ci-dessous ou ailleurs dans la présente annexe. De telles substances actives à faible risque sont utilisées conformément aux utilisations, conditions et restrictions fixées dans le règlement (CE) n° 1107/2009 et compte tenu des éventuelles restrictions supplémentaires qui figurent, le cas échéant, dans la dernière colonne du tableau ci-dessous.

Numéro et partie de l'annexe (¹)		Dénomination	Limites et conditions spécifiques
2D		COS-OGA	
3D		Cérévisane et autres produits à base de fragments de cellules de micro- organismes	Ne provenant pas d'OGM

⁽²) Règlement (UE) n° 1380/2013 du Parlement européen et du Conseil du 11 décembre 2013 relatif à la politique commune de la pêche, modifiant les règlements (CE) n° 1954/2003 et (CE) n° 1224/2009 du Conseil et abrogeant les règlements (CE) n° 2371/2002 et (CE) n° 639/2004 du Conseil et la décision 2004/585/CE du Conseil (JO L 354 du 28.12.2013, p. 22).

5D	10045-86-6	Phosphate ferrique [orthophosphate (III) de fer]	
12D	9008-22-4	Laminarine	Le varech est soit issu de l'aquaculture biologique soit récolté de manière durable conformément à l'annexe II, partie III, point 2.4, du règlement (UE) 2018/848

⁽¹) Inscription sur la liste conformément au règlement d'exécution (UE) n° 540/2011, selon le numéro et la catégorie: partie A, substances actives réputées approuvées en vertu du règlement (CE) n° 1107/2009; partie B, substances actives approuvées en vertu du règlement (CE) n° 1107/2009; partie C, substances de base; partie D, substances actives à faible risque; et partie E, substances actives dont on envisage la substitution.

3. Micro-organismes

Tous les micro-organismes énumérés dans les parties A, B et D de l'annexe du règlement d'exécution (UE) n° 540/2011 peuvent être utilisés dans la production biologique, pour autant qu'ils ne proviennent pas d'OGM et uniquement lorsqu'ils sont utilisés conformément aux utilisations, conditions et restrictions fixées dans les rapports d'examen correspondants³. Les micro-organismes, y compris les virus, sont des agents de lutte biologique qui sont considérés comme des substances actives par le règlement (CE) n° 1107/2009.

4. Substances actives ne relevant d'aucune des catégories ci-dessus

Les substances actives approuvées conformément au règlement (CE) n° 1107/2009 et énumérées dans le tableau ci-dessous ne peuvent être utilisées en tant que produits phytopharmaceutiques dans le cadre de la production biologique que si elles sont utilisées conformément aux utilisations, conditions et restrictions fixées dans le règlement (CE) n° 1107/2009 et compte tenu des éventuelles restrictions supplémentaires figurant, le cas échéant, dans la colonne de droite du tableau ci-dessous.

Numéro et partie de l'annexe (¹)	CAS	Dénomination	Limites et conditions spécifiques
139A	131929-60-7 131929-63-0	Spinosad	
225A	124-38-9	Dioxyde de carbone	
227A	74-85-1	Éthylène	Uniquement sur les bananes et les pommes de terre; il peut néanmoins être utilisé sur les agrumes dans le cadre d'une stratégie destinée à prévenir les dégâts causés par la mouche des fruits
230A	int. al. 67701-09-1	Acides gras	Toutes utilisations autorisées, sauf en tant qu'herbicide
231A	8008-99-9	Extrait d'ail (Allium sativum)	
234A	N° CAS: non attribué N° CIMAP 901	Protéines hydrolysées à l'exclusion de la gélatine	
244A	298-14-6	Carbonate acide de potassium	
249A	98999-15-6	Répulsifs olfactifs d'origine animale ou végétale/Graisses de mouton	
255A et autres		Phéromones et autres substances semiochimiques	Uniquement pour pièges et distributeurs
220A	1332-58-7	Silicate d'aluminium (kaolin)	
236A	61790-53-2	Kieselgur (terre à diatomées)	

247A	14808-60-7 7637-86-9	Sable quartzeux	
343A	11141-17-6 84696-25-3	Azadirachtine (extrait de margousier)	Extrait de graines de neem (Azadirachta indica)
240A	8000-29-1	Huile de citronnelle	Toutes utilisations autorisées, sauf en tant qu'herbicide
241A	84961-50-2	Huile de girofle	Toutes utilisations autorisées, sauf en tant qu'herbicide
242A	8002-13-9	Huile de colza	Toutes utilisations autorisées, sauf en tant qu'herbicide
243A	8008-79-5	Essence de menthe verte	Toutes utilisations autorisées, sauf en tant qu'herbicide
56A	8028-48-6 5989-27-5	Huile essentielle d'orange	Toutes utilisations autorisées, sauf en tant qu'herbicide
228A	68647-73-4	Huile de mélaleuque	Toutes utilisations autorisées, sauf en tant qu'herbicide
246A	8003-34-7	Pyréthrines extraites de plantes	
292A	7704-34-9	Soufre	
294A 295A	64742-46-7 72623-86-0 97862-82-3 8042-47-5	Huiles de paraffine	
345A	1344-81-6	Polysulfure de calcium	
44B	9050-36-6	Maltodextrine	
45 B	97-53-0	Eugénol	
46B	106-24-1	Géraniol	
47B	89-83-8	Thymol	
10E	20427-59-2	Hydroxyde de cuivre	Conformément au règlement d'exécution
10E	1332-65-6 1332-40-7	Oxychlorure de cuivre	(UE) n° 540/2011, seules les utilisations entraînant une application totale maximale de 28 kg de cuivre par hectare sur une
10E	1317-39-1	Oxyde de cuivre	période de 7 ans peuvent être autorisées
10E	8011-63-0	Bouillie bordelaise	
10E	12527-76-3	Sulfate de cuivre tribasique	
40A	52918-63-5	Deltaméthrine	Uniquement pour pièges avec appâts spécifiques contre Batrocera oleae et Ceratitis capitata
5E	91465-08-6	Lambda-cyhalothrine	Uniquement pour pièges avec appâts spécifiques contre Batrocera oleae et Ceratitis capitata

⁽¹) Inscription sur la liste conformément au règlement d'exécution (UE) n° 540/2011, selon le numéro et la catégorie: partie A, substances actives réputées approuvées en vertu du règlement (CE) n° 1107/2009; partie B, substances actives approuvées en vertu du règlement (CE) n° 1107/2009; partie C, substances de base; partie D, substances actives à faible risque; et partie E, substances actives dont on envisage la substitution.

ANNEXE 2: RENDEMENTS MOYENS EN NON-BIO, COEFFICIENTS DE PERTE DE RENDEMENT EN BIO ET RENDEMENTS MOYENS EN BIO PAR CULTURE

Produit	Rendement non-bio moyen (t/ha)	Coefficient de perte de rendement en bio par rapport au non bio	Rendement bio moyen (t/ha)	Source du coefficient de perte de rendement en bio
Abricot	10,4	-43%	5,9	Agribalyse - valeur de la pêche
Banane	23,0	-36%	14,7	Dire d'expert Guadeloupe
Betterave	81,3	-45%	44,4	Enquête terres labourables 2022
Blé	7,4	-55%	3,3	Enquête terres labourables moyenne 2018-2022
Canne à sucre	65,5	0%	65,5	Bionutrinet
Carotte	45,3	-44%	25,2	Agribalyse
Cerise	4,8	-25%	3,6	Bionutrinet
Chou-fleur	15,5	-25%	11,6	Agribalyse
Chou vert	26,7	-25%	20,0	Agribalyse
Clémentine	22,6	-14%	19,4	Bionutrinet
Colza	3,3	-28%	2,3	Enquête terres labourables 2022
Avoine	7,6	-38%	4,7	Enquête terres labourables 2022
Fraise	27,3	-23%	21,0	Bionutrinet
Maïs	9,4	-35%	6,1	Enquête terres labourables 2022
Melon	19,7	-15%	16,7	Agribalyse
Nectarine	17,6	-33%	11,8	Agribalyse
Noix	2,0	-22%	1,6	Agribalyse
Olive	3,0	-3%	2,9	Comparing the yields of organic and conventional agriculture ¹⁶
Orange	24,4	-14%	21,0	Bionutrinet
Pêche	22,7	-43%	12,8	Agribalyse
Poireau	32,5	-23%	25,0	Bionutrinet

¹⁶ Seufert, V., Ramankutty, N. & Foley, J. Comparing the yields of organic and conventional agriculture. Nature 485, 229–232 (2012). https://doi.org/10.1038/nature11069

				Enquête sur les pratiques
D	44.6	220/	20.5	phytosanitaires en arboriculture
Pomme	41,6	-32%	28,5	en 2018
Pomme de				Enquête terres labourables
terre	43,8	-35%	28,5	2022
Prune	14,2	-53%	6,7	Agribalyse - valeur de la pomme
Raisin	7,5	-8%	7,0	Agribalyse
				Enquête terres labourables
Riz	9,0	-55%	4,1	2022 - valeur du blé tendre
Salade	25,9	-14%	22,2	Bionutrinet
				Enquête terres labourables
Soja	3,1	-24%	2,3	moyenne 2018-2022
				Agribalyse pour tomate hors sol
				et Bionutrinet pour tomate
				pleine terre (au prorata de la
				superficie 37% sous serre et
Tomate	127,8	-28%	91,5	63% pleine terre)
				Enquête terres labourables
Tournesol	2,4	-28%	1,7	moyenne 2018-2022

ANNEXE 3: IFT DE REFERENCE EN PRODUCTIONS NON-BIO ET BIO ET SOURCES DES DONNEES

Produit	IFT total moyen hors biocontrôle – production non-bio	IFT total moyen hors biocontrôle – production bio	Sources des IFT
Abricot	8,6	2,2	Enquête pratiques phytosanitaires en arboriculture en 2018 + estimation de l'IFT en bio à 35% de l'IFT fongicide non-bio
Avoine	2,6	0	Enquête pratiques phytosanitaires en grandes cultures 2017
Banane	7	0	Enquête pratiques phytosanitaires en arboriculture en 2018
Betterave	5,5	0	Enquête pratiques phytosanitaires en grandes cultures 2017
Blé	5,1	0	Enquête pratiques phytosanitaires en grandes cultures 2017
Canne à sucre	2,7	0	Enquête pratiques phytosanitaires en grandes cultures 2017
Carotte	7,7	0	Enquête pratiques phytosanitaires en légumes en 2018 + estimation de l'IFT en bio à 35% de l'IFT fongicide non-bio
Cerise	7,3	1,4	Enquête pratiques phytosanitaires en arboriculture en 2018 + estimation de l'IFT en bio à 35% de l'IFT fongicide non-bio
Chou-fleur	2,9	0,21	Enquête pratiques phytosanitaires en légumes en 2018 + estimation de l'IFT en bio à 35% de l'IFT fongicide non-bio
Chou vert	3,6	0,3	Enquête pratiques phytosanitaires en légumes en 2018 + estimation de l'IFT en bio à 35% de l'IFT fongicide non-bio
Clémentine	4,3	0,3	Enquête pratiques phytosanitaires en arboriculture en 2018
Colza	6,3	0	Enquête pratiques phytosanitaires en grandes cultures 2017
Fraise	6,9	1,3	Enquête pratiques phytosanitaires en légumes en 2018 + estimation de l'IFT en bio à 35% de l'IFT fongicide non-bio
Maïs	2,8	0	Enquête pratiques phytosanitaires en grandes cultures 2017

Melon	6.9	2.1	Enquête pratiques phytosanitaires en légumes en 2018 + estimation de l'IFT
Meion	6,8	2,1	en bio à 35% de l'IFT fongicide non-bio
Nectarine	16,3	3,6	Enquête pratiques phytosanitaires en arboriculture en 2018 (IFT de la Pêche) + estimation de l'IFT en bio à 35% de l'IFT fongicide non-bio
Noix	6,2	0	Chambre d'agriculture de l'Isère
Olive	9,4	1,75	DEPHY - Ecophyto PACA + estimations Solagro à partir des données du Ministère de l'agriculture espagnol
Orange	4,3	0,3	Enquête pratiques phytosanitaires en arboriculture en 2018 (IFT de la Clémentine) + estimation de l'IFT en bio à 35% de l'IFT fongicide non-bio
Pêche	16,3	3,6	Enquête pratiques phytosanitaires en arboriculture en 2018 + estimation de l'IFT en bio à 35% de l'IFT fongicide non-bio
Poireau	8,7	0	Enquête pratiques phytosanitaires en légumes en 2018 + estimation de l'IFT en bio à 35% de l'IFT fongicide non-bio
Pomme	26,6	9	Enquête pratiques phytosanitaires en arboriculture en 2018
Pomme de terre	16,2	4,4	Enquête pratiques phytosanitaires en grandes cultures 2017 + estimation de l'IFT en bio à 35% de l'IFT fongicide non-bio
Prune	7,4	1,7	Enquête pratiques phytosanitaires en arboriculture en 2018 + estimation de l'IFT en bio à 35% de l'IFT fongicide non-bio
Raisin	11,3	4,0	Enquête pratiques phytosanitaires en vigne en 2019
Riz	3,4	0	Agrosup Dijon - Tour du Valat
Salade	4,2	0	Enquête pratiques phytosanitaires en légumes en 2018
Soja	1,73	0	Enquête pratiques phytosanitaires en grandes cultures 2017
Tomate	9,9	2,2	Enquête pratiques phytosanitaires en légumes 2018 (tomate tous modes)
Tournesol	2,7	0	Enquête pratiques phytosanitaires en grandes cultures 2017